在数据时代,广告的投放效果评估往往会产生很多的问题。而归因分析(Attribution Analysis)要解决的问题就是广告效果的产生,其功劳应该如何合理的分配给哪些渠道。
在复杂的数据时代,我们每天都会面临产生产生的大量的数据以及用户复杂的消费行为路径,特别是在互联网广告行业,在广告投放的效果评估上,往往会产生一系列的问题:
你可能第一反应就是:当然是我点了哪个广告,然后进去商品详情页产生了购买以后,这个功劳就全部归功于这个广告呀!
没有错,这也是当今最流行的分析方法,最简单粗暴的单渠道归因模型——这种方法通常将销售转化归功于消费者第一次(**首次互动模型,First Model)**或者最后一次接触(末次互动模型,Last Model)的渠道。但是显然,这是一个不够严谨和准确的分析方法。
举个例子:
小陈同学在手机上看到了朋友圈广告发布了最新的苹果手机,午休的时候刷抖音看到了有网红在评测最新的苹果手机,下班在地铁上刷朋友圈的时候发现已经有小伙伴收到手机在晒图了,于是喝了一杯江小白壮壮胆回家跟老婆申请经费,最后老婆批准了让他去京东买,有保障。 那么请问,朋友圈广告、抖音、好友朋友圈、京东各个渠道对这次成交分别贡献了多少价值?——太难了,笔者也不知道
归因分析(Attribution Analysis)模型解析
再举个例子:
下图是某电商用户行为序列图示,各字母代表的含义是D-广告位,Q-商品详情页,D-推荐位,M-购买商品。那么请问,Da、Db、Dc这三种广告位对这次用户购买行为的贡献率分别是多少? 这个问题相对简单点,等你看完文章自然就懂了!
归因分析(Attribution Analysis)模型解析
我们发现,现实情况往往是很复杂的多渠道投放,在衡量其贡献价值以及做组合渠道投放力度的分配时,只依靠单渠道归因分析得到的结果和指导是不科学的,于是引入了多渠道归因分析的方法。当然,多渠道归因分析也不是万能的,使用怎样的分析模型最终还是取决于业务本身的特性以及考虑投入其中的成本。